13/15 rue des Ateliers, 1080 Bruxelles, Belgium
Tel.+32-75-235-984, fax.+32-2-414-8404
http://www.imatix.com

info@imatix.com

“iMatix Corporation sprl

Technical White Paper
Template-based Code Generation

What is ‘template-based code generation’, and why is it so important in today’s world of
Internet applications? We look at the GSL technology developed by iMatix Corporation
and compare this to other techniques such as XSL.

This document is aimed at a technical audience with some knowledge of current Internet
standards, particularly XML, and developers looking to understand and exploit code-
generation techniques.

Copyright

Copyright © 1999-2000 iMatix Corporation. This document may not be distributed, copied,
archived, printed, photocopied, or transmitted in any way whatsoever without prior permission
from iMatix Corporation. All rights are reserved.

IMATIX® is a registered trademark of iMatix Corporation. All other trademarks are the property of
their respective owners.

Version Information

Written: 15 November 1999
Revised: 23 January 2000
Disclaimer

The information contained in this document is distributed on an “as-is” basis without any warranty
either expressed or implied. The customer is responsible for the use of this information and/or
implementation of any techniques mentioned. iMatix Corporation has reviewed the information
for accuracy, but there is no guarantee that a customer using the these techniques and/or
information will obtain the same or similar results in its own operating environment.

It is possible that this material may contain references to, or information about, iMatix Corporation
products or services that have not been announced. Such references or information must not be
construed to mean that iMatix intends to announce such products or services.

iMatix Corporation retains the title to the copyright in this paper, as well as title to the copyright in
all underlying works. iMatix Corporation retains the right to make derivative works and to
republish and distribute this paper to whoever it chooses to.

iMatix Corporation Page 1

Template-based Code Generation

What Is Template-based Code Generation?

Template-based code generation is a powerful way to reduce the cost and effort of writing
code. It's a technique that's underused by most developers, because there is little
literature on this subject, and there are few decent code generation tools.

In this paper I'll present a short history of code generation, and then explain how to use
and exploit the GSLgen code generator, an Open Source code generator developed by
iMatix Corporation that we use heavily in our products and work.

Defining Code Generation

To generate code, we identify the parts of an application's source code that are repetitive,
and we then produce these mechanically, rather than manually. By 'source code' | mean
all texts that go into the production of an application, including documentation, scripts,
definitions, makefiles, and so on. Without code generation tools, developers write all
their code by hand. This can be efficient if quality and documentation are kept high, but
generated code is cheaper and more reliable when it's well applied.

Code generators work by combining various pieces of information to produce an output
file. We define these terms:

The 'template’ is the unchanging part of the output.
The 'instance data’ defines the specifics for each case.
The 'generated text" is the resulting output file.

The Code Generation Process

Instance Data

Template may
be built into the
code generator

Code generator .
is usually mixed Get instance Template
with data
application- N
specific logic Generate
to process the Code
instance data
A
Generated
Text
J\

iMatix Corporation Page 2

AaTind

e Template-based Code Generation

These terms make more sense when we look at some examples:

A mail-merge application mixes names and addresses (instance data) with a standard
form letter (template) to produce a series of customised letters (generated text).

A CGI (web) program mixes data to display (instance data) with a standard HTML file
(template) to produce a HTML page ready to be sent to the browser (generated text).

All applications contain repetitive code: one challenge is to define and isolate this.
Applications lie on a bell-curve of repetition. At one extreme, very little can be produced
mechanically. At the other end, just about everything can be generated. In the middle,
the bulk of applications can be profitably built from a mix of generated and hand-written
code.

As a programmer, I'm naturally interested in generating programs, but a code generator
can just as well act as - for example - a mail-merge application.

Code generation is thus, at least, the process of mechanically producing source code and
the other texts that are used in the construction of a software application, and in a wider
context, any mechanical production of text files.

iMatix Corporation Page 3

ﬁMATIXﬁ Template-based Code Generation

A History of Code Generation

In the fifteen years that I've written and worked with code generators, I've come to
classify these tools in three distinct classes, or generations, each elaborating a set of
techniques. Many developers have discovered these techniques independently, and have
just as independently fallen into the same pitfalls.

The First Generation

A first generation code generator (glcg) is usually produced by a developer who has
identified repetitive source code, and is tired of producing it by hand. A glcg has these
characteristics:

1. It produces one type of generated text.

2. The template is implicitly hard-coded within the code generator as 'print" instructions.
Changing the template means changing these instructions within the code generator.

Therefore, changing the template is expensive. End-users cannot change the template.

The generated text is usually low quality, since it's expensive to change and thus
improve the template.

Using a glcg is usually better than writing code by hand, but large projects will
eventually produce many glcg's, each for different needs. The main problem with a glcg
is that the template is expensive to modify, and the tool is limited to producing one small
set of output files.

The Second Generation

In a second-generation code generator (g2cg), the designer moves the template to an
external file. The g2cg is then a parser for this file. A g2cg has these characteristics:

1. It still generates code for a specific case.

2. The template is an external file.

3. The tool user can modify the template, a good thing for everyone.
4

The generated code can be of very high quality, since the template easy to modify,
customise, and tune. A well-tuned template can produce code that is much better
than hand-written code.

Issues that are costly to solve in a first-generation code generator become trivial to solve
e.g. changing the template to generate SQL for one database in place of another. The
mail-merge and CGlI applications described above are examples of g2cg’s.

The disadvantage of using a second-generation approach is that each code generator
ends-up defining its own template language. Few developers are good at writing parsers,
so the ad-hoc template languages they develop can be cryptic to the tool user. Since
templates are meant to be changed and maintained by the tool user, this can eventually
become a problem.

iMatix Corporation Page 4

Template-based Code Generation

The Third Generation

In a third-generation code generator (g3cg), the code generator becomes a parser capable
of interpreting a general-purpose template language. A g2cg has these characteristics:

1. It can generate code for an unlimited range of problems.
2. The template file starts to looks like a program or script.

3. The instance data becomes an explicit part of the code generator API.

In a g3cg, problem-specific processing moves from the code generator to the template,
and the code generator is reduced to a fast, general-purpose engine capable of doing the
basic task of mixing instance data with template data. The competence needed to write a
code generation engine is separated from the competence needed to write a code
generation application.

3rd-Generation Code Generator

Instance data is
formally
described, e.g.
using XML

Code generator
is completely
generic and
reusable

Instance Data

Template is a
mix of text and
script language

Generate
Code

Generated

Text

iMatix Corporation

Page 5

ﬁMATIXﬁ Template-based Code Generation

The GSLgen Code Generator

At iMatix Corporation we make Open Source software (OSS) tools, mainly for use in our
own products and projects. | started designing a general-purpose code generator as long
ago as 1990 when | was working on a COBOL CASE tool called ETK[1]. | was getting a
little tired of writing, maintaining, and using the numerous g2cg’s we had developed for
ETK.

Starting in 1996, Jonathan Schultz and myself built a number of prototype code
generators in Perl. We defined a general-purpose template language, GSL, that looks a
little like a scripting language, and is based on several g2cg’s we wrote and used.

We also realised that an ideal form for the instance data was some kind of hierarchical
format, rather than the flat-file tabular format used in g2cg's like a mail-merge program.
We played with several alternatives, and then discovered XML (extensible mark-up
language) [2,3]. An XML data file is easy to parse and load into memory as a tree. GSL
lets the template writer play with this tree, and use it to drive the code generation process.

We built a prototype GSL interpreter in Perl, using the XML::Parser [*] written by Larry
Wall and Clark Cooper, an interface to James Clark's XML parser, expat. The resulting
program (GSLperl), is simple. Thanks to XML::Parser, loading an XML file is a one-line
operation. GSLperl also depends on Perl's interpreter to handle expressions, rather than
parsing these itself.

GSLperl was too slow for production use, and our main effort went into writing a fast GSL
interpreter in C. The result, GSLgen, is portable and efficient and useful, and we've
already used it in many projects. GSLgen is based on our OSS SFL library [°] (which
includes XML i/o functions), and we built it using Libero [®], an OSS program construction
tool.

Using XML

GSLgen expects its instance data to come as a well-formatted but non-validated XML file.
That is, it does not use a formal Document Type Definition (DTD) to validate the XML
file. We chose XML because it is, frankly, an excellent way to represent structured data.

1 http://www.etk.com - The ETK CASE tool is available as Open Source Software for various
platforms

2 http://www.xml.org - Portal for XML information.

3 http://www.w3c.org - Home of the WWW Consortium, which designed XML.

4 http://www.cpan.org - The Comprehensive Perl Archive Network. Search for “xml::parser”.
5 http://www.imatix.com/html/sfl/ - The SFL home page.

6 http://www.imatix.com/html/libero/ - Libero is also described in Dr Dobb's Sourcebook
July/August 1996.

iMatix Corporation Page 6

WATIM Template-based Code Generation

It's also simple, robust, portable, widely supported, and standard. This is how | might
represent a simple list of currencies as an XML file:

<CURRENCY_LIST>
<CURRENCY NAME="BEF'" DESCRITPION="Belgian Franc' />
<CURRENCY NAME=""HKD'" DESCRITPION="Hong Kong Dollar™ />
<CURRENCY NAME="'USD'"" DESCRITPION="US Dollar™ />
</CURRENCY_LIST>

The instance data is fully self-describing, and the code generator reads it with minimal
checking beyond the basic check that it is a well-formatted XML file. If attributes are
missing, they can get default values. If there's extra, unexpected instance data, the code
generator just ignores it.

Using a template language like GSL, and XML to represent the instance data, we can
generate any kind of text - HTML, source code, PostScript, SQL, junk e-mails, and so on.

An indirect advantage of using XML for the instance data is that the code generator
becomes a more generally-useful tool. XML is used for many applications in its own
right, and a GSL template can do more than just generate code. It can validate the XML,
using intelligence that is hard to build into classic XML-processing technology such as
DTDs and XSL style sheets.

In fact, it's possible to write whole XML-processing applications in GSL. Code generation
is just one slant on this, even just a special case (although it remains GSL's focus).

The Generator Script Language, GSL

A GSL template is a code generation application. The template decides what to generate,
when, and how to do it. It does this by issuing GSL commands like ‘.output’, which
creates a new output file, and '.for*, which starts a loop. The template mixes GSL
commands with the text it wants to output. GSL commands start with a dot at the start of
the line. Let's look at a small example that generates some HTML:

-output "itemlist_htm"
<HTML><BODY><H1>Generating HTML</H1>
-for currency

$(name:) - $(description:)

-endfor

</BODY></HTML>

-close

Here, the instance data describes some ‘currency’ that has two properties, 'name’ and
'description’. The template implements a loop that creates a bulleted list for the items.
The code generator works through the template line by line, and looks for template
commands like ".output’, ".for', and '.endfor'. It copies anything else to the file it's
creating, here "itemlist.htm". GSLgen interprets the template commands, and inserts the
instance data as required.

iMatix Corporation Page 7

ﬁMATIXﬁ Template-based Code Generation

GSLgen also works in a non-template mode, looking more like a conventional scripting
language. In this mode, output lines start with *>":

output "itemlist_htm"
><HTML><BODY><H1>Generating HTML</H1>
for currency

>$(name:) - $(description:)

endfor

></BODY></HTML>

close

GSL evolved over several years and is based on other code generators we've written and
used, mainly Libero, and the htmlpp HTML preprocessor [/] we use for our websites.

The requirements for such a language are modest compared to full-blown programming
languages. It does not need complex data types, since the instance data is the principle
data object. Rather, it needs fine control over the alignment and formatting of the output
text. We also designed GSL around XML's capacity for structure and repetition.

In the current release — GSL/2.000 — we are adding object-orientation, extensibility, and in
general turning GSL into a language capable of operating in many situations. Its principal
strength as a code generator remains.

Basically, a GSL code generator like GSLgen loads one or more XML files into memory,
then executes the template from start to end. These are some of GSL's principal
commands:

-output <filename>

Start creating a new output file

.include <filename>

Include another template file

-interpret <expression>

Interpret expression as GSL

-.echo <expression>

Echo expression to standard output

-.abort <expression>

Display an error message, and abort

1T <expression>

Start a conditional block

-while <expression>

7 See http://www.htmlpp.org.

iMatix Corporation Page 8

ATIX% Template-based Code Generation

Start a repeated block

-define <name> = <expression>

Define a new attribute at some level

GSL uses the concept of 'scope’ to address different levels within the XML data. The .for
command opens a new scope, usually a child of the current item:

-for [<scope>.] <name>
[as <alias>]
[where <expression>]
[by <expression>]
-endfor

The .for command acts like a combined select, sort, and loop. It's the essential GSL
building block. Using the .for command, the template iterates through a list of items, and
generates code as required. The 'where' clause selects a subset of items depending on
some logical condition. The 'by’ clause orders the items.

As a GSL template can become quite complex, GSL lets you define subroutines, called
macros. The user has full control over the look and feel of the generated code, including
alignment and spacing. GSLgen can generate any programming language, including
COBOL in 80-column format with line numbering.

iMatix Corporation Page 9

Template-based Code Generation

Using GSLgen

The main reason to use GSLgen is that it becomes cheap to apply code generation
techniques to any problem. All one needs to do is:

1. Produce the XML instance data.
2. Write the templates.
3. Integrate GSLgen into the application toolkit.

I'll demonstrate this with some concrete examples.

Generating SQL

In one project, we needed to produce large SQL scripts to manage replication between
copies of a database . The vendor's own replication tool (a classic glcg) produced SQL
that was incomplete. We had the choice of patching this, or generating our own. We
wrote a program to extract the database catalogue definitions for a table as XML. We
wrote this program using C and embedded SQL, but could easily have done it using
Visual Basic and ODBC, Java and JDBC, etc. Then we took the vendor-generated
replication code, and turned this into a GSL template. Finally we wrote a Perl script to
wrap it all together with some simple menus. Our end-user, the database administrator,
was happy to modify and tune the template, without technical knowledge of how the
code generator worked, and a minimal explanation of GSL.

We've used the same approach to generate many kinds of SQL, including scripts to create
databases, mirror data, compare database table contents, and so on.

GSLgen in a Web Server

In our Xitami web server [8], we use GSLgen in a number of places, including:

- To allow server-side XML processing. Using a simple GSL script, it’s easy to transform
XML data files into HTML pages.

- To produce directory listings. These are HTML pages showing the contents of a
directory. Here the instance data is the list of files, their size, type, and permissions.
The template can show icons for each file type, can add links, and so on.

- To produce HTML pages for HTTP errors like '404 not found'. The instance data
holds the cause of the error, plus all the information that the web server has about the
user. This template can make intelligent decisions about the cause of the error, even
the type of browser, and so produce appropriate output.

8 See www.xitami.com - The Xitami web site.

iMatix Corporation Page 10

ﬁMATIXﬁ Template-based Code Generation

- To analyse log files. Xitami creates XML log files, and it's useful to analyse them using
GSLgen.

These applications for GSLgen are modest but offer a great deal of flexibility at a low cost.
Previous releases of Xitami acted like glcg’s, with hard-coded output. It took us only a
few hours to add GSL capability to Xitami.

A Large-scale Code Generation Application

A more heavyweight GSL application is our Studio Workbench, a web-based application
generator that iMatix Corporation is developing . This is basically a set of GSL templates
that produce all the components of web-based application programs from a XML-based
data dictionary. It’s this work that is pushing the development of GSL and GSLgen. For
example: one of our targets is that the code generator should work at least as fast as a
compiler. This is easy for simple applications, but the Workbench template makes
multiple passes in order to generate code. A naive approach to GSL interpretation is too
slow, so we spent quite a lot of time optimising the way GSLgen works.

Makefile and build-script generation

Our software runs on many platforms, and for each package, we need to provide
makefiles, build scripts, and install scripts. For instance, the Xitami package includes
build scripts for Unix, OS/2 and Windows, makefiles for these systems, and several install
scripts for Windows. Currently we manage these half-manually and half using various ad-
hoc code generators. We’re looking at using GSLgen to generate these various files from
a single master XML file.

Web Sites

Up to now we’ve used the htmlpp HTML pre-processor to build our websites. This tool
does make it easy to manage the 700-800 pages on imatix.com and xitami.com, but we’re
planning to use GSLgen instead. In this way we could describe our web site formally as
XML data, with our own mark-up language. A GSL template would then turn this into
HTML. The difference between this approach and a ‘stylesheet’ approach like XSL is that
GSL can, like htmlpp, create tables-of-contents, indexes, and multiple output pages from a
single source file.

Embedding GSLgen in Other Applications

Any application can produce XML instance data and then call the GSLgen code
generator, and finally frees the XML tree. This kind of embedding is easy if you’re writing
C or C++ programs, or working in a language that can call C functions. As OSS, GSLgen
comes with full source code. For other applications, it can be easier to write the XML
data to a sequential file, and then start GSLgen as a command-line process.

iMatix Corporation Page 11

ﬁMATIXﬁ Template-based Code Generation

Debunking Some Myths about Code Generation

Code generators are often seen as a technological burden, rather than as useful tools. |
suspect that this is because glcg's and g2cg’s fail to deliver their full potential. Some of
the common myths about code generation are:

- "Code generators only work for simplistic cases". This is often true, but only because
most code generators are simplistic. A template-based code generator like GSLgen is
extraordinarily flexible, and can generate highly complex texts and source code.

- "Generated code is unreadable”, and "Generated code is low quality". This is often
true for glcg's, because their designers focus on the application-specific problem,
rather than on making the template easy to modify and improve. In a g2cg and g3cg,
the generated code can be as good as, and often is much better, than hand-written
code.

- "Code generators are expensive". Again, this is typical of glcg's, where the slightest
change to the template means modifying, compiling, linking, and distributing a new
release of the code generator. The cost of building and using a g2cg is much more
reasonable. And you can get g3cg's for free.

- "Code generators are complex". Any program that solves multiple problems is going
to be complex. A glcg and g2cg handles both application-specific issues and code-
generation issues, and is often a large and complex program. A g3cg does just one
job, and can be simple. A g3cg written in a text-processing language like Perl can be
just a few pages long.

- "Code generators are too much effort". Many tools require a serious learning curve.
This says more about tool designers than about the problems that the tools solve. One
things | like about GSL is that the language is simple enough to give to non-expert
technicians, yet it's rich enough to build really complex toolkits.

Designing For Code Generation

To get the most from a code-generation approach, you need to design the application
around this. It's like building houses. If every house is different, you need new plans each
time. If houses are based on a common model, you can design a new house simply by
defining the variations from the common model. In the same way, code generation lets
you build programs by making variations on a common model. The application has to be
designed so that such programs are what it needs. It is not economical to generate special
cases. Ergo, the application is built mostly from common cases. Even if you can't
generate everything, you can often generate specific types of source code.

A simplistic approach to code generation can lead to applications in which the user-
interface is fragmented into too many ‘simple’ steps. This is not necessary. A code
generation approach can be sophisticated enough to build complex components, for
instance mixing customised code with the generated code.

iMatix Corporation Page 12

Template-based Code Generation

Comparative Products

Scripting and Template Languages

Several web programming languages allow template-based code generation, as a by-
product of their principal duty as HTML generators:

- Microsoft’s VBScript/ASP combination,
- PHP,
- PerlScript, and so on.

These tools have the same disadvantages for application as general-purpose code
generators:

- They are not designed to work with abstracted instance data, but with a small data set,
usually coming from the form.

- You cannot easily embed these in other applications to do general-purpose code
generation.

These tools are oriented towards HTML production, and may be unsuitable for more
general-purpose tasks. However, it would probably be possible to extend any of these
languages to work in a GSLgen-like fashion.

Other Code Generators

Few software engineers have studied the problem of code generation in detail, and there
are few tools that pretend to do this. There are a few notable exceptions.

In *Advanced Perl Programming’ [?], Sriram Srinivasan writes lucidly about the advantages
of template-driven code generation, and presents a g3cg, 'Jeeves', written in Perl. The
Jeeves template language has several similarities to GSL, showing that there are strong
evolutionary forces at work. As far as we know, both tools evolved independently. To
supply Jeeves with data, you write a small parser for your specific instance data language.
Jeeves is a remarkable illustration of the power potential of a small g3cg, but does not
support XML directly.

Several CASE tools include code generation abilities. These are almost always based on a
specific design methodology, usually object-orientation. | do not know whether such
tools generally use templates, but in my experience to date, they do not. This makes them
of limited use even for the applications they are intended to produce, and of no use at all
for general-purpose work.

9 http://www.oreilly.com/catalog/advperl/ - Chapter 17, “Template-Driven Code Generation”.

iMatix Corporation Page 13

ﬁMATIXﬁ Template-based Code Generation

The XSLT Language

The XSL (extensible stylesheet language) is driving a set of standards that promise
template-based transformation of XML that starts to look like the type of work we can do
with GSL. We will look at one of these, XSLT1C, a language primarily intended for XML
transformations (i.e. production of one XML file from another) but which can be used for
more general-purpose code generation.

XSLT is very significant because it marks the first Internet standard (produced by the
world-wide-web consortium, the W3C) directly or indirectly aimed at template-based
code generation. As we see, it has many parallels with GSL, but still falls short in places.

XSLT Example

This is the XML file we will use as an example — it is taken from the W3C XSLT
documentation edited by James Clark:

<sales>
<division id="North'>
<revenue>10</revenue>
<growth>9</growth>
<bonus>7</bonus>
</division>
<division id="South">
<revenue>4</revenue>
<growth>3</growth>
<bonus>4</bonus>
</division>
<division id="West''>
<revenue>6</revenue>
<growth>-1_5</growth>
<bonus>2</bonus>
</division>
</sales>

10 http://iwww.w3.0rg/TR/xsl

iMatix Corporation Page 14

EMATIXS

Template-based Code Generation

Transforming The XML Data Into HTML
This is an XSLT stylesheet that transforms the XML data into HTML.:

<html xsl:version="1.0"
xmIns:xsl=""http://www._w3.0rg/1999/XSL/Transform"
lang=""en"">

<head><title>Sales Results By Division</title></head>

<body>
<table border="1">
<tr>
<th>Division</th>
<th>Revenue</th>
<th>Growth</th>
<th>Bonus</th>
</tr>
<xsl:for-each select="sales/division'>
<I-- order the result by revenue -->
<xsl:sort select=""revenue"
data-type=""number"
order="'descending"/>
<tr>
<td><xsl:value-of select="@id"/></td>
<td><xsl:value-of select="revenue'/></td>
<td><!-- highlight negative growth in red -->
<xsl:if test="'growth < 0>
<xsl:attribute name="'style'">
<xsl:text>color:red</xsl:text>
</xsl:attribute>
</xsl:if>
<xsl:value-of select=""growth"/></td>
<td><xsl:value-of select="bonus"/></td>
</tr>
</xsl:for-each>
</table>
</body>
</html>

iMatix Corporation Page 15

Template-based Code Generation

This is the equivalent GSL template (note that $(id) gets the value of the attribute called
‘id’, and $(->revenue) gets the value of the child called ‘revenue’:

<html lang="en"">
<head><title>Sales Results By Division</title></head>
<body>
<table border="1">
<tr>
<th>Division</th>
<th>Revenue</th>
<th>Growth</th>
<th>Bonus</th>
</tr>
-for division
define division.revenue = ->revenue
-endfor
-for sales.division by revenue
<tr>
<td>$(id:)</td>
<td>$(->revenue:)</td>
.- highlight negative growth in red
-if ->growth < O
<td style="color:red">

.else
<td>
.endif
$(->growth:)</td>
<td>$(->bonus:)</td>
</tr>
.endfor
</table>
</body>
</html>

iMatix Corporation Page 16

AaTind

Template-based Code Generation

Transforming The XML Data Into SVG

This is an XSLT stylesheet that transforms the XML data into SVG:

<xsl:stylesheet version="1.0"
xmIns:xsl=""http://www_w3.0rg/1999/XSL/Transform"
xmIns="http://www.w3.0rg/Graphics/SVG/SVG-19990812 .dtd">
<xsl:output method="xml" indent="yes" media-type=""image/svg"/>
<xsl:template match="/"">
<svg width = "3in" height="3in">
<g style = "stroke: #000000'>
<l-- draw the axes -->
<line x1="0" x2="150" y1="150" y2="'150"/>

</g>
</svg>

<line x1="0" x2="0" yl="Q" y2="150"/>
<text x="0" y="10">Revenue</text>
<text x="150" y="165">Division</text>
<xsl:for-each select="sales/division'>

<I-- define some useful variables -->
<!-- the bar®s x position -->
<xsl:variable name="pos" select="(position()*40)-30"/>
<l-- the bar"s height -->
<xsl:variable name="height" select="revenue*10"/>
<I-- the rectangle -->
<rect x="{$pos}" y="{150-$height}"
width="20" height="{$height}"/>
<I-- the text label -->
<text x="{$pos}" y="165">
<xsl:value-of select="0id"/>
</text>
<I-- the bar value -->
<text x="{$pos}" y="{145-%height}'>
<xsl:value-of select="revenue'/>
</text>

</xsl:for-each>

</xsl:template>
</xsl:stylesheet>

iMatix Corporation

Page 17

ATIX@ Template-based Code Generation

This is the equivalent GSL template:

<svg width = "3in" height="3in">
<g style = "'stroke: #000000'">
.- draw the axes
<line x1="0" x2="150" y1="150" y2="150"/>
<line x1="0" x2="0" yl1l="0" y2="150"/>
<text x="0" y=""10"">Revenue</text>
<text x="150" y="165">Division</text>
-for division
.- define some useful variables
.- the bar"s x position
define pos = index (O * 40 - 30
.- the bar®"s height and y position
define height = ->revenue * 10
define rect y 150 - height
define value_y = 145 - height
.- the rectangle
<rect x="$(pos)" y="$(rect_y)"
width=""20" height="$(height)"/>
<I-- the text label -->
<text x="$(pos)" y=""165">$(id:)</text>
<I-- the bar value -->
<text x="{$pos}" y="$(value_y)">$(->revenue)</text>
-endfor
</g>
</svg>

These examples show how GSL and XSLT compare. Both are template-based code
generators that can manipulate the XML data using loops, tests, and so on.

In these examples we note that GSL and XSLT appear quite similar. But these examples
are taken from the XSLT documentation, and represent trivial cases. When we look at
larger-scale code generation, XSLT starts to look weaker.

Comparison of GSL and XSLT
In many ways, you can use XSLT and GSL interchangeably. But there are differences:

1. GSLgen has its origins in code generation, while XSLT has its origins in XML
transformation. These are not the same, and GSLgen has many syntactic refinements
that are intended to allow code generation for different programming languages and
environments — for example the manipulation of symbol values to suit different
programming languages’ requirements for variable names.

2. Since XSLT is an XML tag language, it is fairly verbose. GSL is more compact, and
probably easier to work with (the GSL commands are visually distinct from the rest of
the source code.

XSLT is still a proposal (version 1.0 dates from 8 October 1999).

XSL tools in general have suffered from several problems: they are mostly very
complex to install and use, often non-portable, and often include proprietary
extensions. When XSLT becomes a standard, it is unclear that good free portable
XSLT processors will be available.

iMatix Corporation Page 18

Template-based Code Generation

5. XSLT is an inherently complicated language, and the investment needed to create
good XSLT tools will be significant (in our opinion, the same problems have lead to a
lack of good XSL tools).

Some of the abilities that GSL provides that are lacking in XSLT are:

- Some kind of subroutine capability to encapsulate code used several times. GSL
allows macros and functions that can be invoked throughout the template.

- Manipulation of values to adapt to different external requirements. For instance, GSL
lets you output a value like “this is a title” in several ways: “This Is A Title”, “THIS IS A
TITLE”, “this_is_a_title”, and so on.

- Control of what is generated. A GSL template can produce several files at once, by
specifying multiple .output commands.

These issues will most likely be cleared-up and improved over time, and we expect XSLT
to become a standard for template-based code generation within a timeframe of 3 to 5
years.

iMatix Corporation Page 19

Template-based Code Generation

Worked Example

In this section we present a moderately complex case where GSLgen proves to be an
invaluable assistance in the code-generation process.

Our worked example implements a task-based workflow object. Workflow objects are
used in more sophisticated business environments, where data objects go through a life-
cycle of proposal, approval, execution, and so on.

In most workflow applications, this life-cycle is built-in to the code, an obvious way of
doing it, but one with several drawbacks:

The life-cycle is not explicitly defined anywhere, so errors are possible, even if the
documentation is correct.

It’s hard (expensive) to change and improve the life-cycle.
It’s very hard (very expensive) to add multiple life-cycles to the same application.

In our example, we describe the life-cycle for a very simple task-based object — the to-do
list item. A to-do list item has a very simple life-cycle: it’s created, it stays pending until it
is deleted or closed.

We can describe the life-cycle formally as a finite-state machine. This simple means that
we note the states in which the object can exist, and for each state we note the events that
can occur. Events generally map to end-user actions (‘close item’). Each event pushes the
item’s life-cycle to a possibly new next state, and performs some actions on the way.

This a description of the life-cycle of a to-do item as an XML file:

<fsm name = "todo" script = "workflow.sch" >
<state name = "initial" >
<event name = "ok" nextstate = "‘pending" />
<event name = "error" nextstate = "final" />
</state>
<state name = "pending" >
<event name = "close"™ nextstate = "closed" >
<action name = 'close'" domain = "data" />
</event>
<event name = '"‘change' nextstate = "modified" >
<action name = "update'™ domain = ''screen" />
</event>
<event name = "delete" nextstate = "final™ >
<action name = "delete" domain = "data"™ />
</event>
</state>
<state name = "closed" >
<event name = "purge' nextstate = "final" >
<action name = "delete" domain = "data" />
</event>
<event name = "renew" nextstate = "modified" >
<action name = "‘update'™ domain = ''screen" />
</event>
</state>

iMatix Corporation Page 20

AATIXE

e oo Template-based Code Generation

<state name = "modified" >
<event name = "ok" nextstate = "pending” >
<action name = "'update"™ domain = "data"™ />
</event>
<event name = "cancel' nextstate = "pending" >
</event>
<event name = "delete'" nextstate = "final™ >
<action name = "delete" domain = "data" />
</event>
</state>
</fsm>

Having described the life-cycle, we then write a GSL template that implements it in some
way. There are many ways to implement a FSM. The simplest is a set of ‘CASE’
statements, selecting the next state and action depending on the current state and event.

Let’s see how this would be implemented in a simple language like Microsoft’s VBScript:

This subroutine implements the workflow state-machine for the
$(name) object. The workflow subroutine accepts a state and
event as input and returns a state, action, and action arguments
as output. This implementation allows one action per transition.

Input: cur_state Name of current state
cur_event Name of event that was invoked

Output: cur_state New state after transition
action Action to execute on object
domain Action domain

The function return code is 0 if the state transition was valid,
-1 if the cur_event is illegal in this state, and -2 if
the cur_state is not a valid state.

function wf_$(fsm.name) step (cur_state, cur_event, action, domain)
action = """
domain = "'
select case cur_state
.for state
case "$(name)"
select case cur_event

- for event
case "'$(name)"
cur_state = "$(nextstate)"
- for action
action = "$(name)""
domain = "$(domain)"
- endfor
. endfor
case else

wF_$(fsm.name) step = -2
end select

.endfor
case else
wF_$(fsm.name) step = -2
end select
end function

iMatix Corporation Page 21

ATIX@ Template-based Code Generation

It’s useful to be able to get the initial state automatically too. Let’s generate that code:

Set initial state for object

function wf_$(fsm.name) initial_state

- for state where index() = 1
wf_$(fsm.name) initial_state = "$(name)"

- endfor

end function

Finally, let’s generate a routine that returns us the events valid in any given state:

function wf_$(Ffsm.name) methods (cur_state)
select case cur_state
.for state
case "$(name)"
- define events = "

. for event
. define events = "$(events:)" + "$(Name)" + " "
. endfor
wf_$(fsm.name) methods = "$(events:)"
-endfor
case else

wF_$(Fsm.name) methods v
end select
end function

This is the full code generated for the to-do item:

wf_todo.asp - Workflow layer for todo

Generated: 1999/11/30 from workflow.sch
Script written by iMatix Corporation <pieter._hintjens@imatix.com>

Set initial state for object

function wf_todo_initial_state
wf_todo_initial_state = "initial"
end function

This subroutine implements the workflow state-machine for the
todo object. The workflow subroutine accepts a state and

event as input and returns a state, action, and action arguments
as output. This implementation allows one action per transition.

Input: cur_state Name of current state
cur_event Name of event that was invoked

Output: cur_state New state after transition
action Action to execute on object
domain Action domain

The function return code is 0 if the state transition was valid,
-1 if the cur_event is illegal in this state, and -2 if
the cur_state is not a valid state.

function wf _todo _step (cur_state, cur_event, action, domain)

iMatix Corporation Page 22

EMATIXS

Template-based Code Generation

action =
domain =
select case cur_state
case "initial"
select case cur_event

case "ok"

cur_state = "pending"
case "‘error"”

cur_state = "final"
case else

wf_todo_step = -2
end select

case '‘pending”
select case cur_event
case "'close"

cur_state = "closed"

action = "close"

domain = "data"
case '‘change™

cur_state = "modified"”

action = "update"

domain = "screen"
case "'delete”

cur_state = "final"

action = "delete"

domain = "data"
case else

wf_todo_step = -2
end select

case '"closed”
select case cur_event
case '‘purge"’

cur_state = "final"

action = "delete"

domain = "data"
case "‘renew"

cur_state = "modified"

action = "update"

domain = "screen"
case else

wf_todo_step = -2
end select

case "modified"
select case cur_event

case "ok"
cur_state = "pending"
action = "update”
domain = "data"
case "‘cancel”
cur_state = "pending"
case "'delete”
cur_state = "final"
action = "delete"
domain = "data"
case else

wf_todo_step = -2
end select

case else

iMatix Corporation

Page 23

Template-based Code Generation

wf_todo_step = -2
end select
end function

function wf_todo_methods (cur_state)
select case cur_state
case "initial”
wf_todo _methods = "Ok Error "
case '‘pending"
wf_todo_methods = ""Close Change Delete "
case "‘closed"
wf_todo_methods = "Purge Renew "
case "modified”
wf_todo_methods = 'Ok Cancel Delete ™
case else
wf_todo _methods = "'
end select
end function

Of course, it’s now easy to generate a corresponding program for much more complex
life-cycles, such as purchase orders, project propositions, formal documents, and so on.

iMatix Corporation Page 24

Template-based Code Generation

Conclusions

GSLgen represents a best-of-breed product that is ahead of the industry by several years.
It is unique in providing a reusable, portable, Open Source XML-based template-based
code generator that is unique in its power and scope.

When xmlsoftware.com added GSLgen to their library, they had no category for it, and
finally placed it in ‘Converters’. The concept of code generation as a tool category is
poorly understood by the software industry.

GSLgen is not simply a code generator. It is a tool for constructing code generators.
These range from the trivial to the extremely sophisticated. Any model that can be
abstracted as XML metadata files and a template becomes a candidate for code
generation.

We expect GSLgen as it stands today to be overtaken by developments, especially those
surrounding XSL and XSLT, within three to five years. Future development of GSLgen is
aiming towards the inclusion of a full Open Source scripting language like JavaScript. We
intend to replace our second-generation code generations (especially Libero) with GSLgen
during 2000.

GSL represents an excellent technology for constructing small, medium, and large-scale
code generation tools based on arbitrary XML metadata and arbitrarily-complex
requirements.

iMatix Corporation Page 25

